联系我们
您所在的位置: 师资力量
姓名 潘家营 职称 讲师
职务 专业 动力机械及工程
所在系、所 内燃机燃烧学国家实验室 通讯地址 天津大学北洋园校区热动力大楼 308/309
电子信箱 jypan@tju.edu.cn 办公室电话 022-27891285
传真 022-27891285  
主要学历

1.2012- 2015,热能与动力工程,天津大学,博士

2.2013– 2014, 机械与航空宇航系,普林斯顿大学,联合培养

3.2010- 2012,热能与动力工程,天津大学,硕士

4.2006- 2010,热能与动力工程, 山东理工大学,本科

主要学术经历

1.2018– 至今,内燃机燃烧学国家重点实验室,天津大学,讲师

2.2015– 2018,机械工程学院, 天津大学,博士后

主要研究方向

1.内燃动力高效清洁燃烧

2.电燃料制备与高效利用

3.动力电池主动安全防控

主要讲授课程

《燃烧理论》、《AdvancedCombustion》、《工程制图基础》

主要学术兼职

1.中国空天动力航空活塞发动机专委

2.Defence Technology期刊青年编委

3.国际燃烧学会、中国汽车工程学会、中国内燃机学会等学术组织会员

4.Proc. Combust. Inst., Combust. Flame, Appl. Energy, Fuel, Energy Fuel10余个国际期刊审稿人

主要学术成就、奖励及荣誉

1.2022年,天津市技术发明一等奖

2.2021年,天津市优秀青年科技工作者提名

3.2019年,天津大学“北洋青年骨干”教师

4.2018年,天津市创新人才推进计划青年科技优秀人才

5.2018年,人才发展特殊支持计划高层次创新创业团队

6.2018年,中国汽车工程学会优秀博士学位论文优秀奖

主要科研项目及角色:

1. 国家重点研发计划政府间国际创新合作(子课题):提高中载及重载卡车能效关键技术中美联合研究[2022YFE0100100]2022.06-2024.0560万元,主持,在研;

2. 国家自然科学基金(面上项目):高海拔复杂燃烧边界条件下高强化柴油机爆震形成机理及调控[52076149]2021.01-2024.1258万元,主持,在研;

3. 国家自然科学基金(青年项目):双燃料低速船机火焰传播和局部自燃的基础研究[51706152]2018.01-2020.1224万元,主持,结题;

4. 天津市自然科学基金(青年项目):双燃料低速船机燃烧粗暴影响机理及关键调控技术研究[18JCQNJC07500]2018.04-2021.036万元,主持,结题;

5. 中国博士后科学基金(重点项目):缸内未燃混合气的热点自燃及其对燃烧过程的影响研究[2016M590201]2016.01-2018.128万元,主持,结题;

6.  山东省博士后创新项目(专项资助):先进发动机极端条件下多尺度湍流对自燃及燃烧过程的影响研究[201903089]2019.01-2020.123万元,主持,结题;

7. 国家重点研发计划政府间国际创新合作(子课题):提高中载及重载卡车能效关键技术中美联合研究[2017YFE0102800]2018.01-2020.1230万元,主持,结题;

8. 校企联合基金:光学发动机缸内流场和燃烧场的测量,2021.12-2022.05**万元,主持,在研;

9. 校企联合基金:碳中和燃料喷雾燃烧特性测试,2022.08-2023.01**万元,主持,在研;

10.   校企联合基金:氨/氨氢预混柴油引燃条件喷雾燃烧试验,2022.06-2022.09**万元,主持,在研;

11.   校企联合基金:光学发动机缸内流场和燃烧场的测量,2021.12-2022.05**万元,主持,在研;

12.   校企联合基金:燃气灶燃烧和换热的数值仿真研究,2020.11-2021.12**万元,主持,在研;

13.   校企联合基金:点燃式气体各缸爆压一致性优化的实验研究,2019.05-2020.12**万元,主持,在研;

14.   校企联合基金:氧气/天然气爆炸过程及自燃诱导时间测量,2018.12-2019.04**万元,主持,在研;

15.   校企联合基金:预燃室湍流射流火焰可视化测试研究,2019.10-2020.12**万元,主持,在研;

16.   国家自然科学基金(重大研究计划重点项目): 封闭空间内压力突变-湍流燃烧相互作用机理[91641203]2017.01-2020.12240万元,参与,结题;

17.   国家自然科学基金(国际合作与交流项目):极板-电极一体化质子交换膜燃料电池多场耦合传输机理研究[51920105010]2020.01-2024.12,247万元,参与,在研;

18.   军委科技委 基础加强计划(重点项目课题):***低温混合燃烧放热***, 2018.01-2022.12, 200万元,参与,在研;

19.军委装备发展部装备预研基金(重点项目):化石燃料新概念无人机动力系统技术[6140311040101]2018.01-2020.12,200万元,参与,在研;


代表性论著

1.国际期刊论文

1)      J Pan, YHe, L Wang, T Li, H Wei*, G Shu. Effects of thermal stratification andturbulent intensity on auto-ignition and combustion mode transition. Combustionand Flame 244, 112273, 2022.

2)      J Pan, YDing, R Tang, L Wang, H Wei, G Shu. Ethanol Blending Effects on Auto-Ignitionand Reaction Wave Propagation Under Engine-Relevant Conditions. Fuel 330,125560, 2022.

3)      R Zhang,L Chen, H Wei, J Li, R Chen, J Pan*. Understanding the difference in combustionand flame propagation characteristics between ammonia and methane using anoptical SI engine. Fuel 324, 124794, 2022.

4)      L Chen,X Zhang, R Zhang, J Li, J Pan, H Wei. Effect of hydrogen direct injection onnatural gas/hydrogen engine performance under high compression-ratio conditions.International Journal of Hydrogen Energy, 2022.

5)      L Chen,X Zhang, R Zhang, J Li, J Pan, H Wei. Cycle-resolved visualization oflubricant-induced abnormal combustion in an optical natural gas/hydrogenengine. Fuel 321, 124053, 2022.

6)      R Tang,Q Xu, J Pan, J Gao, Z Wang, H Wei, G Shu. An experimental and modeling study ofammonia oxidation in a jet stirred reactor. Combustion and Flame 240, 112007,2022.

7)      Y Wang,X Wang, J Pan, H Wei, X Zhou, M Pan. Effects of different injection strategieson mixing, combustion and emission behavior of gasoline compression ignition(GCI) engines. Fuel 317, 123486, 2022.

8)      Z Li, JPan, W Li, X Wang, H Wei, J Pan. New Insights into Abnormal CombustionPhenomena Induced by Diesel Spray-Wall Impingement under Engine-Relevant Conditions.Energies 15 (8), 2941, 2022.

9)      Y Wang,C Wu, M Pan, J Pan. Experimental Study on Combustion and EmissionCharacteristics of Gasoline Compression Ignition Engines Under CooperativeControl of Operating Parameters. Journal of Energy Resources Technology 144(4), 2022.

10)   J Li, RZhang, P Yang, J Pan, H Wei, L Chen. Optical investigations on lean combustionimprovement of natural gas engines via turbulence enhancement. Journal ofCentral South University, 1-14, 2022.

11)   X Wang,G Shu, H Tian, R Wang, J Pan. Effect and simplification of off-designefficiency on optimization of planning and operation for distributed energysystems. International Journal of Green Energy 19 (2), 109-124, 2022.

12)   X Wang,J Pan, H Wei, W Li, J Zhao, Z Hu. Mechanism of Methanol Synthesis from CO2Hydrogenation over Pt8/In2O3 Catalysts: A Combined Study on Density FunctionalTheory and Microkinetic Modeling. The Journal of Physical Chemistry C 126 (4),1761-1769, 2022.

13)   J Pan, LWang, Y He, H Wei, G Shu, T Li. Hotspot auto-ignition induced detonationdevelopment: emphasis on energy density and chemical reactivity. CombustionTheory and Modelling 26 (1), 179-200, 2022.

14)   X Wang,J Pan, H Wei, W Li, J Zhao, Z Hu. Mechanism of Methanol Synthesis from COHydrogenation over Pt/InOCatalysts: A Combined Study on Density Functional Theory and MicrokineticModeling, 2022.

15)   S Zhu, JPan, J Gao, M Zhu, D Zhang. A Numerical Investigation into Auto-Ignition ofC4-C7 n-Alkanes: Mechanisms of Transition from the First-Stage Ignition toSecond-Stage Ignition. International Journal of Energy for a Clean Environment23 (4), 2022.

16)   L Chen,S Zhang, R Zhang, J Li, P Yang, J Pan, H Wei. Optical experiments on the effectof turbulent jet ignition on lean burning and engine knocking. Fuel 307,121869,   2022.

17)   J Pan, SDong, T Li, Y He, H Wei, J Jiang. Numerical simulations on autoignitionpropagation modes under reciprocating engine-relevant conditions. CombustionScience and Technology 193 (13), 2241-2258, 2021.

18)   J Pan, RTang, J Gao, Z Wang, H Wei, G Shu. A Theoretical Study on Cool Flame Oxidationas an Effective Way for Fuel Reforming: Emphasis on Ignition Characteristicsand Chemical Analysis. Combustion Science and Technology, 1-17, 2021.

19)   Z Zheng,L Wang, J Pan, M Pan, H Wei. Numerical investigations on turbulent jet ignitionwith gasoline as an auxiliary fuel in rapid compression machines. CombustionScience and Technology, 1-20, 2021.

20)   J Pan, XLi, Z Yin, G Shu, C Liu, H Wei. Effects of intake conditions and octanesensitivity on GCI combustion at early injection timings. Fuel 298, 120803,2021.

21)   P Zhang,Z Pan, Y Zhu, Q Wang, Z He, J Pan. Experimental Study on theDeflagration-to-Detonation Transition Distance in Millimeter-Scale SmoothTubes. AIAA Journal 59 (8), 3144-3151, 2021.

22)   R Zhang,L Chen, H Wei, J Pan, J Li, P Yang, R Chen. Optical study on the effects of thehydrogen injection timing on lean combustion characteristics using a naturalgas/hydrogen dual-fuel injected spark-ignition engine. International Journal ofHydrogen Energy 46 (39), 20777-20789, 2021.

23)   J Pan, ZHu, Z Pan, G Shu, H Wei, T Li, C Liu. Auto-ignition and knockingcharacteristics of gasoline/ethanol blends in confined space with turbulence.Fuel 294, 120559, 2021.

24)   H Wei, RZhang, L Chen, J Pan, X Wang. Effects of high ignition energy on lean combustioncharacteristics of natural gas using an optical engine with a high compressionratio. Energy 223, 120053, 2021.

25)   J Pan, YHe, T Li, H Wei, L Wang, G Shu. Effect of Temperature Conditions on FlameEvolutions of Turbulent Jet Ignition. Energies 14 (8), 2226, 2021.

26)   H Wei, ZHu, L Chen, J Pan, X Wang, Z Zheng. Optical Experiments on Auto-Ignition Modesin a Turbulent Field under Engine-Relevant Conditions. Combustion Science andTechnology, 1-19, 2021.

27)   Y Wang,C Wu, M Pan, J Pan. Experimental study on combustion and emissioncharacteristics of GCI engines under cooperative-control of operatingparameters. Journal of Energy Resources Technology, 1-36, 2021.

28)   X Wang,J Pan, H Wei, W Li, J Zhao, Z Hu. CO 2 activation and dissociation on In 2 O 3(110) supported Pd n Pt (4− n)(n= 0–4) catalysts: a density functional theorystudy. Physical Chemistry Chemical Physics 23 (19), 11557-11567, 2021.

29)   J Pan, ZZheng, H Wei, M Pan, G Shu, X Liang. An experimental investigation onpre-ignition phenomena: Emphasis on the role of turbulence. Proceedings of theCombustion Institute 38 (4), 5801-5810, 2021.

30)   T Li, JPan, F Kong, B Xu, X Wang. A quasi-direct numerical simulation solver forcompressible reacting flows. Computers & Fluids 213, 104718, 2020.

31)   L Chen,R Zhang, H Wei, J Pan. Effect of flame speed on knocking characteristics for SIengine under critical knocking conditions. Fuel 282, 118846, 2020.

32)   J Pan, ZHu, H Wei, L Wang, Y He, X Wang. Forced turbulence affected auto-ignition andcombustion modes under engine-relevant conditions. Applications in Energy andCombustion Science 1, 100015, 2020.

33)   J Zhao,L Zhou, K Li, X Zhang, J Pan, R Chen, H Wei. Effect of diluent gases on end-gasautoignition and combustion modes in a confined space. Combustion and Flame222, 48-60, 2020.

34)   X Wang,H Tian, F Yan, W Feng, R Wang, J Pan. Optimization of a distributed energysystem with multiple waste heat sources and heat storage of differenttemperatures based on the energy quality. Applied Thermal Engineering 181,115975, 2020.

35)   X Wang,R Wang, M Jin, G Shu, H Tian, J Pan. Control of superheat of organic Rankinecycle under transient heat source based on deep reinforcement learning. AppliedEnergy 278, 115637, 2020.

36)   X Wang,J Pan, W Li, H Wei, M Pan, X Wang, H Wu. Optical experiments on diesel knockfor high altitude engines under spray impingement conditions. Fuel 278, 118268,2020.

37)   X Wang,H Wei, J Pan, Z Hu, Z Zheng, M Pan. Analysis of Diesel Knock for High-AltitudeHeavy-Duty Engines Using Optical Rapid Compression Machines. Energies 13 (12),3080, 2020.

38)   JPan, L Chen, H Wei, D Feng, S Deng, G Shu. On autoignition mode under variablethermodynamic state of internal combustion engines. International Journal ofEngine Research 21 (5), 856-865, 2020.

39)   L Chen,R Zhang, J Pan, H Wei. Optical study on autoignition and knockingcharacteristics of dual-fuel engine under CI vs SI combustion modes. Fuel 266,117107, 2020.

40)   M Pan, WQian, H Wei, D Feng, J Pan. Effects on performance and emissions of gasolinecompression ignition engine over a wide range of internal exhaust gasrecirculation rates under lean conditions. Fuel 265, 116881, 2020.

41)   L Zhou,L Zhong, J Zhao, J Pan, Z Xu, H Wei. Flame propagation and combustion phenomenain a confined space with the perforated plate at different positions.Combustion Science and Technology 192 (3), 493-512, 2020.

42)   H Wei, FLiu, J Pan, Q Gao, G Shu, M Pan. Experimental study on the effect ofpre-ignition heat release on GCI engine combustion. Fuel 262, 116562, 2020.

43)   L Chen,R Zhang, J Pan, H Wei. Effects of partitioned fuel distribution onauto-ignition and knocking under spark assisted compression ignitionconditions. Applied Energy 260, 114269, 2020.

44)   L Chen,H Wei, J Pan, C Liu, G Shu. Understanding the correlation betweenauto-ignition, heat release and knocking characteristics through opticalengines with high compression ratio. Fuel 261, 116405, 2020.

45)   L Chen,J Pan, C Liu, G Shu, H Wei. Effect of rapid combustion on engine performanceand knocking characteristics under different spark strategy conditions. Energy192, 116706, 2020.

46)   R Zhang,L Chen, J Pan, H Wei, L Zhou, C Liu. Effects of direct-injected hydrogenaddition on methane combustion performance in an optical SI engine with highcompression-ratio. International Journal of Hydrogen Energy 45 (4), 3284-3293,2020.

47)   J Zhao,L Zhou, L Zhong, X Zhang, J Pan, R Chen, H Wei. Experimental investigation ofthe stochastic nature of end-gas autoignition with detonation development inconfined combustion chamber. Combustion and Flame 210, 324-338, 2019.

48)   M Pan, ZZheng, R Huang, X Zhou, H Huang, J Pan, Z Chen. Reduction in PM and NOX of adiesel engine integrated with n-octanol fuel addition and exhaust gasrecirculation. Energy 187, 115946, 2019.

49)   H Wei, ZHu, J Pan, X Wang, L Zhou, F Liu. Effect of fuel properties on knockingcombustion in an optical rapid compression machine. Energy & Fuels 33 (12),12714-12722, 2019.

50)   L Chen,H Wei, R Zhang, J Pan, L Zhou, C Liu. Effects of late injection on leancombustion characteristics of methane in a high compression ratio opticalengine. Fuel 255, 115718, 2019.

51)   L Chen,J Pan, H Wei, L Zhou, J Hua. Numerical analysis of knocking characteristics andheat release under different turbulence intensities in a gasoline engine.Applied Thermal Engineering 159, 113879, 2019.

52)   H Wei, FLiu, J Pan, L Zhou, Z Hu, M Pan. On pre-ignition heat release of fuels withvarious octane sensitivities under compression ignition conditions. AppliedThermal Engineering 159, 113953, 2019.

53)   H Wei, XZhang, H Zeng, R Deiterding, J Pan, L Zhou. Mechanism of end-gas autoignitioninduced by flame-pressure interactions in confined space. Physics of Fluids 31(7), 076106, 2019.

54)   J Pan, SDong, H Wei, T Li, G Shu, L Zhou. Temperature gradient induced detonation developmentinside and outside a hotspot for different fuels. Combustion and Flame 205,269-277, 2019.

55)   H Wei, JZhao, X Zhang, J Pan, J Hua, L Zhou. Turbulent flame–shock interaction inducingend-gas autoignition in a confined space. Combustion and Flame 204, 137-141,2019.

56)   J Pan, ZHu, H Wei, M Pan, X Liang, G Shu, L Zhou. Understanding strong knockingmechanism through high-strength optical rapid compression machines. Combustionand Flame 202, 1-15, 2019.

57)   L Chen,H Wei, R Zhang, J Pan, L Zhou, D Feng. Effects of spark plug type and ignitionenergy on combustion performance in an optical SI engine fueled with methane.Applied Thermal Engineering 148, 188-195, 2019.

58)   L Chen,H Wei, C Chen, D Feng, L Zhou, J Pan. Numerical investigations on the effects ofturbulence intensity on knocking combustion in a downsized gasoline engine.Energy 166, 318-325, 2019.

59)   L Zhou,R Kang, H Wei, D Feng, J Hua, J Pan, R Chen. Experimental analysis ofsuper-knock occurrence based on a spark ignition engine with high compressionratio. Energy 165, 68-75, 2018.

60)   M Pan, HWei, D Feng, J Pan, R Huang, J Liao. Experimental study on combustioncharacteristics and emission performance of 2-phenylethanol addition in adownsized gasoline engine. Energy 163, 894-904, 2018.

61)   J Pan, GMa, H Wei, Y Shang, C Liu, G Shu. Strong knocking characteristics undercompression ignition conditions with high pressures. Combustion Science andTechnology 190 (10), 1786-1803, 2018.

62)   J Pan, NLi, H Wei, J Hua, G Shu. Experimental investigations on combustion accelerationbehavior of methane/gasoline under partial load conditions of SI engines.Applied Thermal Engineering 139, 432-444, 2018.

63)   H Wei, JHua, M Pan, D Feng, L Zhou, J Pan. Experimental investigation on knockingcombustion characteristics of gasoline compression ignition engine. Energy 143,624-633, 2018.

64)   J Pan, HWei, G Shu, R Chen. Effect of pressure wave disturbance on auto-ignition modetransition and knocking intensity under enclosed conditions. Combustion andFlame 185, 63-74, 2017.

65)   J Pan, HWei, G Shu, M Pan, D Feng, N Li. LES analysis for auto-ignition inducedabnormal combustion based on a downsized SI engine. Applied Energy 191,183-192, 2017.

66)   H Wei, DFeng, J Pan, A Shao, M Pan. Knock characteristics of SI engine fueled withn-butanol in combination with different EGR rate. Energy 118, 190-196, 2017.

67)   J Pan, HWei, G Shu, Z Chen, P Zhao. The role of low temperature chemistry in combustionmode development under elevated pressures. Combustion and Flame 174, 179-193,2016.

68)   H Wei, DGao, L Zhou, S Petrakides, R Chen, D Feng, J Pan. Experimental study on laminarflame characteristics of methane-PRF95 dual fuel under lean burn conditions.Fuel 185, 254-262, 2016.

69)   J Pan, PZhao, CK Law, H Wei. A predictive Livengood–Wu correlation for two-stage ignition.International Journal of Engine Research 17 (8), 825-835, 2016.

70)   H Wei, DGao, L Zhou, J Pan, K Tao, Z Pei. Experimental observations of turbulent flamepropagation effected by flame acceleration in the end gas of closed combustionchamber. Fuel 180, 157-163, 2016.

71)   H Wei, DFeng, M Pan, JY Pan, XK Rao, D Gao. Experimental investigation on the knockingcombustion characteristics of n-butanol gasoline blends in a DISI engine.Applied Energy 175, 346-355, 2016.

72)   J Pan, GShu, P Zhao, H Wei, Z Chen. Interactions of flame propagation, auto-ignitionand pressure wave during knocking combustion. Combustion and Flame 164,319-328, 2016.

73)   J Pan, GShu, H Wei, M Pan. Hydrogen addition effect on a reaction front propagation inNTC-affected auto-igniting mixture. International Journal of Hydrogen Energy 40(36), 12522-12530, 2015.

74)   M Pan, GShu, J Pan, H Wei, D Feng, Y Guo, Y Liang. Performance comparison of2-methylfuran and gasoline on a spark-ignition engine with cooled exhaust gasrecirculation. Fuel 132, 36-43, 2014.

75)   J Pan, GShu, H Wei. Research on in-cylinder pressure oscillation characteristic duringknocking combustion in spark-ignition engine. Fuel 120, 150-157, 2014.

76)   J Pan, GShu, H Wei. Interaction of flame propagation and pressure waves during knockingcombustion in spark-ignition engines. Combustion Science and Technology 186(2), 192-209, 2014.

77)   G Shu, JPan, H Wei. Analysis of onset and severity of knock in SI engine based onin-cylinder pressure oscillations. Applied Thermal Engineering 51 (1-2), 1297-1306,2013.

78)   G Shu, JPan, H Wei, N Shi. Simulation research on the effect of cooled EGR,supercharging and compression ratio on downsized SI engine knock. ChineseJournal of Mechanical Engineering 26 (2), 341-350, 2013.

2. 中文期刊论文

1)      陈锐; 张鹏飞; 潘家营*; 卫海桥; 商艺宝; 丙烷自燃特性及爆震机理的试验研究, 天津大学学报, 2018, 51(12):1217-1222.

2)      舒歌群; 潘家营; 卫海桥*; 史宁; 基于缸内压力振荡的冷 EGR 对汽油机爆震特性的影响, 天津大学学报, 2014, 47(6):551-557.

3)      卫海桥; 蔡霁蕾; 商艺宝; 舒歌群; 潘家营*; 快速压缩机缸内温度不均匀性及其对自燃的影响, 天津大学学报, 2017, 50(5):551-556.

4)      刘昌文; 马国斌; 潘家营*; 卫海桥; 胡祯; 燃烧边界条件对异辛烷自燃及爆震的影响, 天津大学学报, 2019, 52(9):941-948.

5)      韩义勇; 商艺宝; 廖升友; 罗浩锋; 陈炜烽; 潘家营*; 卫海桥; 快速压缩机液压制动活塞回弹现象的优化, 中国机械工程, 2019, 30(16):1911-1915.

6)      马国斌;刘昌文; 潘家营;卫海桥;商艺宝; 负温度梯度对预混气体反应波传播模态的影响, 内燃机学报, 2020, 38(3):234-240.

7)      胡祯; 卫海桥; 潘家营*; 马国斌; 商艺宝; 刘昌文; 能量密度和壁面温度对爆震影响的试验研究, 内燃机工程, 2019, 40(4): 1-7.

8)      卫海桥; 李楠; 潘家营*; 华剑雄; 甲醇和甲醇重整气对直喷汽油机性能影响的对比研究, 内燃机工程, 2018, 39(1):15-22.

9)      李宪宇; 潘家营*; 刘峰; 卫海桥; 刘昌文; 舒歌群; 焰前放热对 GCI 发动机燃烧性能的影响, 内燃机学报, 2021, 39(6):481-487.

10)   卫海桥; 裴自刚; 冯登全; 潘家营*; 潘明章; 压电喷油器多次喷射对 GDI 汽油机颗粒物排放的影响, 吉林大学学报, 2018, 48(1):166-173.

11)   王利民; 韩义勇; 王志刚; 李楠; 潘家营*; 卫海桥; 天然气-汽油双燃料发动机燃烧特性试验研究, 内燃机工程, 2018, 39(5):38-44.

12)   韩峰; 李卫; 潘洁; 胡祯; 潘家营*; 卫海桥; 湍流对着火模式影响的可视化试验, 内燃机学报, 2021, 39(5):417-423.

13)   朱珊珊; 高健*; 潘家营; 正庚烷“两阶段”自燃过程的动力学解析, 工程热物理学报, 2020, 41(11):2870-2875.

14)   杨鹏晖; 张少栋; 张韧; 李金光; 李卫; 潘家营*; 卫海桥; 基于光学发动机的 PODE 燃烧特性试验研究, 录用待发表.

15)   卫海桥; 王楠; 李卫; 贾德民; 李金光; 杨鹏晖; 潘家营*; 进气道喷射氢发动机燃烧及爆震特性试验研究, 录用待发表.

16)   卫海桥; 张福强; 张少栋; 李宪宇; 李卫; 潘家营*; 辛烷值敏感性对 GCI 发动机低负荷稳定性的影响, 录用待发表.

3. 会议论文

1)      LinChen, Jiaying Pan*, Jianfu Zhao. Numerical Investigations on Strong KnockingCombustion under Advanced Compression Ignition Conditions, 2020, SAEInternational Conference, 2020-01-1137.

2)      Zhen Hu,Jiaying Pan*, Haiqiao Wei, Guobin Ma, Tao Li, Changwen Liu. Optical Experimentson Strong Knocking Combustion in Rapid Compression Machines with DifferentFuels, 2019, SAE International Conference, 2019-01-1142.

3)      JiayingPan, Gequn Shu, Haiqiao Wei*. Experimental Study on Combustion Characteristicsof Methane/Gasoline Dual-Fuel in a SI Engine at Different Load Conditions,2018, SAE International Conference, 2018-01-1140.

4)      JiayingPan, Gequn Shu, Haiqiao Wei*. Characteristics of Gasoline/Methane Dual FuelCombustion in a Spark-Ignited Engines, 2017, ASPACC 2017 - 11th Asia-PacificConference on Combustion, Australia.

5)      JiayingPan, Li Nan, Gequn Shu, Haiqiao Wei*. LES on Knocking Combustion and End-gasAuto-ignition Based on A Downsized Spark-ignited Engine, 2017, ASPACC 2017 -11th Asia-Pacific Conference on Combustion, Australia.

6)      JiayingPan, Haiqiao Wei*, Gequn Shu, Jianxiong Hua, Dengquan Feng, Mingzhang Pan.Experimental Study on Combustion Characteristics and Emission Performance of2-Phenylethanol Addition in a Downsized Gasoline Engine, 2017, 2017 InternalCombustion Engine, United Kingdom.

4. 授权发明专利

1)      JiayingPAN; Lei WANG; Haiqiao WEI; Gequn SHU; Changwen LIU; Guobin MA; ELECTROMAGNETICBRAKING SYSTEM AND CONTROL METHOD FOR RAPID COMPRESSION MACHINEA, 2021-10-21, 美国, US16621254.

2)      潘家营; 万思萌; 卫海桥; 王磊; 舒歌群; 梁兴雨; 唐若月; 面向可再生储氢燃料的发动机燃烧系统,2020-08-31, 中国,CN202010900748.2.

3)      潘家营; 杨鹏晖; 卫海桥; 王祥庭; 舒歌群; 一种预防燃油热氧化结焦问题的燃料预混装置,2020-05-14, 中国,CN202010409238.5.

4)      卫海桥; 高东志; 蒋晟龙; 潘家营; 舒歌群; 梁兴雨; 田华; 模拟汽油机末端气体自燃的定容燃烧弹系统,2015-06-10, 中国,CN201310172689.1.

5)      卫海桥; 李楠; 潘家营; 潘明章; 一种耦合三元催化器的燃料重整装置, 2019-01-11, 中国, CN201610697686.3.

6)      潘家营; 张泽; 卫海桥; 舒歌群; 刘昌文; 胡祯; 一种用于快压机制动活塞的密封装置, 2020-10-27, 中国, CN201810962943.0.

7)      潘家营; 王磊; 卫海桥; 舒歌群; 刘昌文; 马国斌; 基于快速压缩机电磁制动系统的控制方法,2020-02-07, 中国,CN201810922489.6.

8)      潘家营; 王磊; 卫海桥; 舒歌群; 刘昌文; 马国斌; 一种用于快速压缩机的电磁制动系统, 2020-02-07, 中国, CN201810922488.1.

9)      潘家营; 王磊; 卫海桥; 舒歌群; 刘昌文; 何昱; 一种基于电磁控制的小型快速压缩机, 2019-11-01, 中国, CN201911062038.0.

10)   潘家营; 杨鹏晖; 卫海桥; 王祥庭; 舒歌群; 一种改善热氧化结焦问题的车载废气柴油重整器,2020-05-14, 中国,CN202010408250.4.

11)   卫海桥; 杨鹏晖; 潘家营; 王祥庭; 舒歌群; 一种预防热氧化结焦问题的车载废气柴油重整器,2020-05-14, 中国,CN202010408233.0.

12)   王志坚; 潘家营; 吕顺; 李卫; 一种滚流测试工装与一种滚流测试设备, 2021-08-19,
, CN202110951858.6.

13)   王志坚; 潘家营; 吕顺; 李卫; 一种用于燃气发动机的自适应燃气成分的控制方法;2021-08-19, 中国,CN202110951836.X.

14)   梁兴雨; 张洪升; 舒歌群; 王昆; 王月森; 卫海桥; 潘家营; 实现空间多点自燃的燃烧装置及测量系统;2020-05-15, 中国,CN202010416675.X.

15)   梁兴雨; 许朝阳; 舒歌群; 卫海桥; 王昆; 潘家营; 王月森; 应变式机油泵控制系统; 2020-03-12, 中国, CN202010169418.0.

16)   梁兴雨; 许朝阳; 舒歌群; 卫海桥; 王昆; 潘家营; 王月森; 机油泵控制系统; 2020-03-12, 中国, CN202010169494.1.

5. 软件著作权

卫海桥, 潘家营, 舒歌群等. 软件著作权专利:内燃机爆震仿真模拟软件KIVA-WAVE1.0.登记号2012SR095241.


课题组成员